Sunday, August 26, 2007

My search for Artificial Intelligence over the net...


Artificial intelligence (AI) is a branch of computer science and engineering that deals with intelligent behavior, learning, and adaptation in machines. Research in AI is concerned with producing machines to automate tasks requiring intelligent behavior. Examples include control, planning and scheduling, the ability to answer diagnostic and consumer questions, handwriting, speech, and facial recognition. As such, it has become an engineering discipline, focused on providing solutions to real life problems, software applications, traditional strategy games like computer chess and other video games. For topics relating specifically to full human-like intelligence, see strong AI.
Schools of thoughtAI divides roughly into two schools of thought: Conventional AI and Computational Intelligence (CI), also sometimes referred to as Synthetic Intelligence to highlight the differences. Conventional AI mostly involves methods now classified as machine learning, characterized by formalism and statistical analysis. This is also known as symbolic AI, logical AI, neat AI and Good Old Fashioned Artificial Intelligence (GOFAI). (Also see semantics.) Methods include:
Expert systems: apply reasoning capabilities to reach a conclusion. An expert system can process large amounts of known information and provide conclusions based on them.
Case based reasoning
Bayesian networks
Behavior based AI: a modular method of building AI systems by hand. Computational Intelligence involves iterative development or learning (e.g. parameter tuning e.g. in connectionist systems). Learning is based on empirical data and is associated with non-symbolic AI, scruffy AI and soft computing. Methods mainly include:
Neural networks: systems with very strong pattern recognition capabilities.
Fuzzy systems: techniques for reasoning under uncertainty, have been widely used in modern industrial and consumer product control systems.
Evolutionary computation: applies biologically inspired concepts such as populations, mutation and survival of the fittest to generate increasingly better solutions to the problem. These methods most notably divide into evolutionary algorithms (e.g. genetic algorithms) and swarm intelligence (e.g. ant algorithms). With hybrid intelligent systems attempts are made to combine these two groups. Expert inference rules can be generated through neural network or production rules from statistical learning such as in ACT-R. It is thought that the human brain uses multiple techniques to both formulate and cross-check results. Thus, systems integration is seen as promising and perhaps necessary for true AI.

1 comment:

. said...

Not bad. Good list of topics and some of their links.